
Making Your Application
Unicode Savvy

Session 200



Making Your Application
Unicode Savvy

Xavier Legros
Mac OS X Evangelist

Apple Worldwide Developer Relations



Making Your Application
Unicode Savvy

Deborah Goldsmith
International and Text Group



Agenda
•Overview of Unicode and Mac OS X support
•How to support Unicode in your application



Unicode and Mac OS X



The Past
•WorldScript

• Each script has its own encoding
• Some have more than one (Roman, Arabic)
• Based on standards, but not standard

•Encoding implied by font ID range
•Wrong font           gibberish

• ∆ƒøˆ «√∑Ø±◊¿Œ



Unicode to the Rescue!
•A worldwide standard

• ISO and Unicode Consortium
• Covers most writing systems

•Each character has its own unique code point
• An A is an A is an A

•Unicode 3.2: 95,156 graphic characters



Mac OS X: Unicode Advantages
•One character set for all languages
•More characters for existing languages
•More languages
•No garbled text
•Multiple languages at once
•Cross platform



Unicode Coverage: Alphabetic
•Lucida Grande

• Extended Roman
• Cyrillic
• Vietnamese
• Greek

•Times, Helvetica, etc.
• Extended Roman



Unicode Coverage: Japanese
•Hiragino: 6 DTP quality OpenType Type 1 fonts
•Industry-leading character coverage

• Full JIS X 0213
• Adobe Japan 1-4
• Shaken 78 Phototypesetting Kanji
• NLC shape recommendations

• ���������		
��



Unicode Coverage: Japanese
•Over 20,000 glyphs vs. ≈7,000 in MacJapanese
•Gaiji problem greatly reduced

• Data reusable and cross platform
•Can be used in HI, not just documents
•Coming soon: variant glyph access via TSM



Demo
Japanese and Unicode



Unicode Coverage: Jaguar Plans
•Chinese

• GB 18030 fonts: 32,000+ glyphs
• CJK Unified Ideographs
• Ideographic Extension A
• Yi
• Partial coverage of Tibetan, Mongolian



Unicode Coverage: Jaguar Plans
•Arabic, Hebrew, Thai, Devanagari, Gurmukhi,

Gujarati, Icelandic, Turkish, Greek, Croatian,
Romanian, Slovenian, Hawaiian

•All future scripts only via Unicode
• No WorldScript I or Roman variant scripts
• No extensions to WorldScript II



Language Support Requirements
•Fonts
•Input method or keyboard
•Collation (comparison) override

• Default is Unicode order (UTS #10)
•Date/Time/Currency



Adding a Language: Fonts
•Valid, comprehensive Unicode cmap
•Valid ‘post’ table
•Valid ‘name’ table

• PostScript, Unique, Full, Family, Style, Version
•Valid ‘OS/2’ table

• ulUnicodeRange and ulCodePageRange
•‘morx’ table if shaping behavior needed

• Unicode composition can be synthesized



Adding a Language: Keyboards
•New: drop-in keyboard layouts!

• /Library/Keyboard Layouts or ~/Library/…
•Unicode keyboard layout defined via XML file
•Equivalent to ‘uchr’
•New APIs for manipulating keyboards

• KLGetKeyboardLayoutxxx, etc.
• Do not use the Resource Manager!



Demo
XML Keyboard Layout



Unicode in Your Application



Character/Glyph Model
•Critical concept for Unicode (see UTR #17)
•Characters represent information (“spoken”)
•Glyphs are shapes on screen or page (“written”)
•Often 1:1, but not always

• Arabic, Indic, but even English and Japanese
•Unicode rendering system must map characters

to glyphs



Unicode String

LayoutLayout

Font DataFont Data

3, 4

5

6
1

2

092A
0942
0930
094D
0924
093F

1
2
3
4
5
6

The Character/Glyph Model



Demo
Typing in Devanagari



Encoding Forms
•Scalar Values (used in HTML/XML)

• U+0000 through U+10FFFF
•UTF-16 (used in Carbon, Cocoa, Java)

• One or two 16-bit values per scalar
•UTF-8 (used in BSD)

• 1–4 bytes per scalar
•UTF-32 (not used in Mac OS X)



Normalization Forms
•Unicode Standard Annex #15
•Fully decomposed (HFS+)

• e´ but not é
•Canonical composed (Internet, Windows)

• é but not e´
• TEC support planned for Jaguar

•Two more forms (compatibility decompositions)



Text Storage
•Cocoa

• NSString
•Carbon

• CFString
• Raw UniChar (UTF-16) arrays

•Disk (documents, .strings or .plist files)
• Big-endian UTF-16, or UTF-8



Unicode Pitfalls: Characters
•Clusters

• é or �
•Surrogates

•        (U+9FA5) vs.       (U+2000B)
•Multiple “spellings”

• é vs. e´



•Splitting clusters, assuming 1:1:1 code:char:glyph
• “Long résumé” becomes “Long résume…”

•Splitting surrogate pairs
•        becomes garbled:

•Not recognizing canonical equivalents
• Résumé ≠ Re´sume´ ≠ Résume´ …

Problems in Non-Savvy Apps



Solutions
•NSString

• rangeOfComposedCharacterSequenceAtIndex:
• compare:

•Unicode Utilities
• UCFindTextBreak (char, cluster, word, line)
• UCCompareText

•ATSUI
• kATSULineTruncationTag



•Bidirectional and/or cursive
• Arabic
• Hebrew
• Zapfino

•Rearrangement
• Devanagari

Unicode Pitfalls: Complex Scripts



•Drawing style runs one at a time: wrong order!

•Assuming char index = glyph index
• Improper hit testing, highlighting,

cursor movement

Problems in Non-Savvy Apps



Solutions
•Unicode layout must be for entire paragraph

• NSAttributedString, NSTypesetter
• ATSUTextLayout + ATSUStyle

•Map between char and coordinate using APIs
• ATSUOffsetToPosition, ATSUPositionToOffset
• ATSUxxxCursorPosition
• NSLayoutManager



Supporting Older Encodings
•Which encoding to use?

• Usually GetApplicationTextEncoding()
• Sometimes CFStringGetSystemEncoding()
• Otherwise, application dependent

•CFString/NSString
•Text Encoding Converter
•Both handle Internet/Windows as well as Mac OS



System Services Summary
•CFString/NSString

• UTF-16 storage
• String manipulation
• Encoding conversion

•NSString
• Cluster boundaries
• Locale-sensitive collation



System Services Summary
•Unicode Utilities

• Boundaries (character, cluster, word, line)
• Cursor movement (forward/back)
• Collation (comparison)
• Locale/Region mapping



System Services Summary
•MLTE

• Unicode text editing and display
• Replacement for TextEdit in Carbon

•NSTextView
• Unicode text editing and display



System Services Summary
•Text Encoding Converter

• Supports a large number of encodings
• Multiple forms of Unicode

•Text Services Manager
• Necessary for Unicode or CJK input
• Handled for you by MLTE, NSTextView



Summary of Jaguar Plans
•Additional Unicode coverage

• GB 18030
• More languages

•Drop-in keyboards
•XML keyboards
•Conversion to precomposed Unicode



Sources of Information
http://www.unicode.org/

• Technical reports, code charts, sample code
•Unicode 3.0 book (ISBN 0-201-61633-5)
http://developer.apple.com/intl

• International Technologies
http://developer.apple.com/fonts

• Font specs and font tools



Room J
Tue., 3:30pm

Room J
Tue., 3:30pm

202 Drawing Text With ATSUI:
Apple Type Services for Unicode Imaging

Room N
Tue., 7:30pm

Room N
Tue., 7:30pm

International BoF:
Meet the engineers

Room A2
Thurs., 9:00am

Room A2
Thurs., 9:00am

208 MLTE: A Unicode Text Engine:
The Multilingual Text Engine

Room J1
Thurs., 5:00pm

Room J1
Thurs., 5:00pm

FF008 International Feedback Forum:
Come tell us what you think!

Roadmap



Q&A

Xavier Legros
Mac OS X Evangelist
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html



Who to Contact
Xavier Legros
Mac OS X Evangelist
Apple Worldwide Developer Relations
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html








